DECISION-MAKING in SPINE TRAUMA

Edward C. Benzel, MD

Cleveland Clinic

The First Mission

Establish
the
Primary and Secondary
Diagnoses and Related Pitfalls

The Injury
The Deficit
The Co-Morbidities
The Potential Medical Complications
The Potential Surgical Complications

The Pitfalls

The Second Mission

Establish the Plan

DIAGNOSES AND PITFALLS

The Injury
The Deficit
The Co-Morbidities
The Potential Medical Complications
The Potential Surgical Complications

The Pitfalls

Let's Go Back to the Very Basics

Type IV. "Burst" fracture. Entire vertebral body crushed, with intraspinal bone fragments

X-ray film: Type IV fracture of C6

Pain

EXCEPTIONS

VERY OLD

. . . .

VERY YOUNG

Motor

MYOTOMES

DELTOIDS C5 BICEPS C5, 6

TRICEPS C6, 7 INTEROSSEI C8

UPPER ABDOMINAL T8, 9 LOWER ABDOMINAL T10-12

HIP FLEXOR L1, 2 QUADRACEPS L3, 4

FOOT DORSIFLEXION L4, 5 FOOT PLANTARFLEXION S1, 2

Sensory

Autonomic

SPINAL SHOCK

LOSS OF SYMPATHETIC TONE
FLACCID MUSCLES & SPHINCTERS
UP TO 50% VOLUME DEFICIT

CARDIAC OUTPUT

HEAT LOSS

PRIMARY INJURY

Distortion
Disruption
Metabolic

MYRIAD OF AGENTS

Ca ++

NMDA

STEROIDS

LOW HIGH ULTRA-HIGH

INFLAMMATION VS. CASCADE

CARDIOVASCULAR

MANAGEMENT

HYPOVOLEMIA

RELATIVE

CPP = MABP - ICP

1 SCPP

HYPOTHERMIA

'RADIATOR EFFECT'

RESPIRATORY CARE

PATHOPHYSIOLOGY OF RESPIRATION IN HEAD INJURY

 $\mathbf{R}_{\mathbf{x}}$

VOLUME VENTILATION CHEST PHYSIOTHERAPY AGGRESSIVE MANAGEMENT

CATABOLIC RESPONSE

2 MONTHS

Neg NITROGEN BALANCE

OVER (or UNDER) FEEDING

RESPIRATORY MUSCLES

↓NUTRITION

MEAN WEEKLY NITROGEN BALANCE (SCI PATIENTS)

 $\mathbf{R}_{\mathbf{x}}$

ESTIMATE REQUIREMENTS REPLENISH DOCUMENT EFFICACY

Men (kcal/day):

$$BEE = 66 + (13.8 \times kg) + 5 \times cm) - (6.8 \times age)$$

$PEE = BEE \times 1.2 \times 1.6$

REPLENISH

PO VS IV

FOLEY

INTERMITTENT CATH.

SKIN CARE

Side lying pressure points

Supine pressure points

Sitting pressure points

The Second Mission

Establish the Plan

When?

How?

Spinal Cord Injury

Emergent or Urgent Surgery

What is Emergent?

What is Urgent?

Definitions

may vary

DEPENDING ON CIRCUMSTANCES

1 hour 3 hours 8 hours 24 hours 72 hours

Logistics, Logistics, Logistics

Vary from Institution to Institution and from Surgeon to Surgeon

Laboratory Research

Rats

are not

Humans

Fiber Tracts Somatotopic Arrangement Differs

Locomotor Command System

Human Research?

Have we proven that surgery is efficacious?????

TABLE 7
Pre- and Postoperative Functional State

Preoperative		Postoperative						
Neurological grade	No. of cases	Neurological grade						
		I	II	III	IV	V	VI	VII
I	34	$(34)^{a}$						
II	10		(6)	2	1	1		
III	10			(1)	2	6	1	
IV	12			18 5	(0)	6	6	
V	11					(1)	10	
VI	21						(4)	17
VII	7						100000	(7)

[&]quot;The numbers in parentheses indicate the total number of unimproved patients in each functional category.

Have we proven that surgery is efficacious?????

Not unequivocally!!!!!

Yet, we keep talking about timing of surgery!!!!!

If decompression surgery is not proven,

will doing surgery earlier help make our case?

Legitimate Evidence

Sparse

TIMING OF SURGERY FOR ACUTE SCI

No standards re ROLE AND TIMING of decompression in acute SCI

Urgent decompression for bliateral locked facets in incomplete myelopathy

Urgent decompression for neurological deterioration

Urgent decompression for acute SCI - reasonable practice option

Urgent decompression for acute SCI - can be performed safely

EMERGING EVIDENCE - Surgery within 24 hrs MAY reduce length of ICU stay

EMERGING EVIDENCE - Surgery within 24 hrs MAY reduce medical complications

Fehlings et al Spine, 2006

Study Planned U of Toronto and Thomas Jefferson

Not Randomized 24 hours

Investigator Bias
Patient Selection Bias
Winner-Loser Bias

Closed Reduction of Locked Facets

8% incidence of neurological deterioration

Tator et al; JNS Spine 1999

Emotion

VS

Evidence

If my foot was on your spinal cord, you would want me to take it off!!!

NOWIIIII

Its just not that simple.

The removing of the foot requires both Anesthesia and Surgery

in a

Medically Vulnerable Patient

Much Hype in Player's Treatment, Doctors Say

GBy ALAN SCHWARZ

Published: January 15, 2008

For all the images of athletes running and jumping in 2007, the sight of Kevin Everett merely walking was one of the most newsworthy.

We must focus on the study of objective, non-biased metrics.....

.....and make decisions based on the data derived!!!!!!

CHEMISTRY

CHEMISTRY

If it works for you.....
it works for you!!!!

CHEMISTRY

...and it probably works for your patients!!!!

Penetrating Injuries

When?

How?

Surgical Strategies

Fuse Long

Fuse Short

Front

Back

Both

EVIDENCE-BASED METHODOLOGIES

"The conscientious, explicit, and judicious use of the current best evidence in making decisions about the care of individual patients"

Sackett

"Good doctors use both individual clinical expertise and the best available external evidence, and neither alone is enough. Without clinical expertise, practice risks becoming tyrannized by evidence, because even excellent external evidence may be inapplicable to or inappropriate for an individual patient. Without current best evidence, practice risks rapidly becoming out of date, to the detriment of patients."

Sackett DL: Evidence-Based Medicine. Spine 23:1085-1086, 1998

PBDM

PBDM

A Clinical Decision-Making Strategy That Employs the Best Available Information and a Logic-Based Decision Making-Process

- Separation of a Complex Problem into its Component Parts
- Prioritization of the Component Parts
- Serial Solution of the Prioritized Component Parts (Problems)

Neurological

Ventral Column Restoration Capacity

MINIMAL 1

SPREAD 2

WIDE 3

Neurological

Ventral Column Restoration Capacity

Neurological

Ventral Column Restoration Capacity

Neurological

Ventral Column Restoration Capacity

SPINE SURGERY BEGETS SPINE SURGERY

